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ABSTRACT

A method is presented for mapping sea surface salinity (SSS) from Aquarius level-2 along-track data in

order to improve the utility of the SSS fields at short length [O(150 km)] and time [O(1 week)] scales. The

method is based on optimal interpolation (OI) and derives an SSS estimate at a grid point as a weighted sumof

nearby satellite observations. The weights are optimized to minimize the estimation error variance. As an

initial demonstration, the method is applied to Aquarius data in the North Atlantic. The key element of the

method is that it takes into account the so-called long-wavelength errors (by analogy with altimeter appli-

cations), referred to here as interbeam and ascending/descending biases, which appear to correlate over long

distances along the satellite tracks. The developed technique also includes filtering of along-track SSS data

prior to OI and the use of realistic correlation scales of mesoscale SSS anomalies. All these features are shown

to result in more accurate SSS maps, free from spurious structures. A trial SSS analysis is produced in the

North Atlantic on a uniform grid with 0.258 resolution and a temporal resolution of one week, encompassing

the period fromSeptember 2011 throughAugust 2013.A brief statistical description, based on the comparison

between SSS maps and concurrent in situ data, is used to demonstrate the utility of the OI analysis and the

potential ofAquarius SSS products to document salinity structure at;150-km length and weekly time scales.

1. Introduction

Sea surface salinity (SSS) is a key parameter that re-

flects the intensity of themarine hydrological cycle (U.S.

CLIVAROffice 2007).Aquarius/Satelite de Aplicaciones

Cientificas-D (SAC-D) satellite observations provide an

opportunity to observe near-global SSS with space and

time resolution not available by other components of the

Global Ocean Observing System (GOOS).
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Aquarius/SAC-D is a collaborative space mission be-

tween the National Aeronautics and Space Adminis-

tration (NASA) and Argentina’s space agency. Since its

launch in June 2011 and the onset of data delivery in late

August 2011, the Aquarius/SAC-D satellite has been

providing space-based observations of SSS with a com-

plete global coverage every 7 days. The satellite is po-

sitioned on a polar sun-synchronous orbit crossing the

equator at 1800 local time (LT) (ascending) and 0600 LT

(descending). TheAquarius instrument consists of three

microwave radiometers that generate three beams at

different angles relative to the sea surface. The beams

form three elliptical footprints on the sea surface (76km3
94 km, 84 km3 120 km, and 96 km 3 156 km), aligned

across a ;390-km-wide swath. The emission from the

sea surface, measured by the radiometers as an equiva-

lent brightness temperature in kelvins, is converted to

SSS, subject to corrections for various geophysical ef-

fects. A detailed description of the Aquarius/SAC-D

satellite mission and the Aquarius instrument can be

found in LeVine et al. (2007) and Lagerloef et al. (2008).

Since the availability of Aquarius on-orbit data, the

calibration/validation team has been actively identifying

problems and errors, improving algorithms, and updat-

ing the versions of available data. With respect to SSS,

significant sources of errors are temporal sensor drift,

ascending/descending biases, and interbeam biases

(Lagerloef et al. 2013). The latter biases are the focus of

the present study. Although there has been steady im-

provement in the level-2 SSS versions over the past two

years, both the ascending/descending biases and inter-

beam biases continue to have significant space–time

variability globally, and are the primary source of re-

sidual calibration errors in Aquarius SSS retrievals that

manifest themselves as artificial north–south-striped

patterns in mapped SSS fields.

Figure 1, showing global maps of interbeam differ-

ences averaged over the month of September 2012, illus-

trates the problem. The differences are shown separately

for ascending (from southeast to northwest) and de-

scending (from northeast to southwest)Aquarius passes.

In many areas, the interbeam differences are much larger

than 0.2 psu and do not represent the true ocean signal.

Note the large-scale structure of the interbeamdifferences

and the differences between the ascending and descending

patterns. The differences also have large amplitude tem-

poral variations with an annual cycle (not shown).

The primary objective of this investigation is to test

the possibility of correcting errors in Aquarius SSS data

by incorporating available statistical information about

the signal and noise into the mapping procedure com-

monly known as optimal interpolation (OI). OI is

a fairly straightforward but powerful method of data

analysis, extensively used by oceanographers and

FIG. 1. Global maps of interbeam SSS differences (psu) averaged over September 2012. (top) SSS of beam 2

(middle beam) minus SSS of beam 1 for (a) ascending and (b) descending satellite passes. (bottom) SSS of beam 2

minus SSS of beam 3 for (c) ascending and (d) descending satellite passes. Areas where the differences are smaller

than 0.2 psu are blanked. The interbeamSSS differences are computed by differingmonthly SSS fields constructed by

bin averaging of rawAquarius data (each beam separately) within 48 3 48 bins centered on a global grid with the grid

spacing of 28 in both zonal and meridional directions.
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meteorologists for estimating values of geophysical

variables on a regular grid from irregularly sampled ob-

servations. The method is based on the Gauss–Markov

theorem (Gandin 1965; Bretherton et al. 1976; McIntosh

1990) and determines a pointwise estimate of the in-

terpolated field with minimum ensemble mean-square

error, given prior information about the variances and

correlation functions of the estimated field and the data.

The latter requirement is probably the hardest step in

practical implementation of the method to the problem

of mapping the Aquarius SSS. This is partly because in

many parts of the ocean, there are insufficient high-

resolution observations to confidently specify the re-

quired statistics of the field (Bingham et al. 2002). The

attractive feature of OI, however, is that it affords a very

convenient way of taking into account error information

specific to a given observational platform. This is par-

ticularly relevant to the satellite SSS data, since errors in

the satellite retrievals are of different types and are

spatially correlated (Lagerloef et al. 2013). Finally, the

OI formalism has been successfully applied for mapping

various satellite data, such as sea surface temperature

(e.g., Reynolds and Smith 1994; Reynolds et al. 2007;

Thiebaux et al. 2003) and sea level anomaly (Le Traon

et al. 1998; Ducet et al. 2000). Many ideas originally

developed for these applications are found to be fruitful

for the present study as well.

In this paper we focus on the North Atlantic between

08 and 408N. The choice of this particular region is mo-

tivated by the ongoing field experiment Salinity Pro-

cesses in the Upper Ocean Regional Study (SPURS) to

study the physical processes that are responsible for

the maintenance and magnitude of the subtropical At-

lantic salinity maximum. The overall region includes

substantial space–time variability of SSS as well as sig-

nificantly enhanced near-surface, in situ salinity obser-

vations during SPURS.

The rest of the paper is organized as follows. Section 2

provides an overview of the satellite SSS data. Section 3

provides a general description of the algorithm; specifics

are given in section 4. Section 5 presents results that for-

mally validate the use of the long-wavelength error model

to correct Aquarius SSS data for interbeam biases. An

intercomparison of SSS analyses is presented in section 6.

Section 7 provides the main conclusions and a brief dis-

cussion of possible improvements of the analysis.

2. Aquarius SSS data

In the present study, we use level-2 (L2) version 2.0

Aquarius data produced by the NASA Goddard Space

Flight Center’s Aquarius Data Processing System

(ADPS). The L2 data files, distributed by the Physical

Oceanography Distributed Active Archive Center (PO.

DAAC) of the Jet Propulsion Laboratory (JPL), con-

tain retrieved SSS, navigation data, ancillary fields, con-

fidence flags, and other related information such as

surface winds. The data are structured as a sequence of

files, each corresponding to one orbit of Aquarius. An

orbit is defined as starting when the satellite passes the

South Pole. Individual observations along each orbit

consist of a sequence of data points sampled at a 1.44-s

(;10km) interval. Each individual observation represents

the average salinity in the upper 1–2-cm layer and over

a;100-km footprint (Le Vine et al. 2007; Lagerloef et al.

2008). The ancillary SSS data are provided from the global
1/128 data-assimilative Hybrid Coordinate Ocean Model

(HYCOM). The model assimilates satellite altimeter ob-

servations, satellite, and in situ SST as well as vertical

temperature/salinity profiles fromArgo floats andmoored

buoys. More details on HYCOM can be found in

Chassignet et al. (2009). In Aquarius L2 data files, the

HYCOM SSS is interpolated to the time and location

of every Aquarius 1.44-s sample interval (Lagerloef

et al. 2013).

Figure 2 shows the Aquarius ground tracks over the

North Atlantic between the equator and 408N. Each

track represents three radiometer beams shown by dif-

ferent colors. The Aquarius sampling pattern is quite

dense, implying that a variety of commonly used in-

terpolation techniques can be applied to construct

a spatially mapped product. The problem, however, lies

in the relatively large retrieval errors in the satellite SSS

data, which, if not corrected, result in spurious structures

in the corresponding SSS maps.

An example of L2 SSS data is shown in Fig. 3, illus-

trating that there are at least two types of errors in the

FIG. 2. Example pattern of Aquarius ground tracks over the

North Atlantic over a 7-day period. Colors indicate the three

Aquarius beams. Ascending passes are from southeast to northwest.

Heavy lines (green, red, and blue) indicate two swaths (ascending

and descending) passing through the SPURS site (258N, 388W).
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SSS retrievals. A significant source of error is the

accuracy of individual measurements along the satellite

tracks. An important aspect of this error is its random

character and a very short wavelength. As will be

shown later, this short-wavelength noise is essentially

‘‘white’’ in nature and can effectively be suppressed by

averaging over a sufficient number of observations or by

filtering the data along track, such as shown in Fig. 3

(heavy lines).

Of much greater concern are differences between the

three beams, which can be as large as 0.5–0.8 psu and

appear to be correlated over large distances along the

satellite tracks. This type of error is also illustrated by

Fig. 3. During the satellite pass over the North Atlantic

on 14 September 2012, the middle beam (red) delivered

systematically lower SSS as compared to the other two

beams. Such interbeam biases are likely a manifestation

of residual geophysical corrections. Since the three ra-

diometer beams view the ocean surface at slightly dif-

ferent angles, each beam is affected by geophysical

errors differently (Lagerloef et al. 2013).

3. Interpolation procedure

In the interpolation procedure, it is desirable not only

to extract all available information from the satellite

data but to simultaneously correct for various errors.

The ultimate goal is to produce the best possible

estimate of the evenly gridded SSS field. The OI anal-

ysis attempts to accomplish this goal by minimizing

the mean-square interpolation error for an ensem-

ble of analysis realizations (Gandin 1965; Bretherton

et al. 1976).

a. General description of algorithm

The interpolation expression for OI with N observa-

tions can be written as (Bretherton et al. 1976; McIntosh

1990; Le Traon et al. 1998)

Ŝx5 S0x 1 �
N

i51
�
N

j51

A21
ij Cxj(S

obs
i 2 S0

i ) , (1)

where Ŝx is the interpolated value (or estimate) at the

grid point x, S0x is the forecast (or ‘‘first guess’’) value at

the grid point x, Sobsi is the measured value at the obser-

vation point i, S0i is the forecast value at the observation

point i, A is the N3N covariance matrix of the data

Aij 5 h(Sobsi 2S0i )(S
obs
j 2S0j )i , (2)

and C is the joint covariance matrix of the data and the

field to be estimated, where

Cxj5 h(Sx2 S0x)(S
obs
j 2 S0j )i . (3)

It is generally assumed that the field Si is imperfectly

measured at observation points, yielding values with

random errors «i: S
obs
i 5 Si 1 «i. It is also assumed, as is

usually reasonable, that the errors and the field are not

correlated. Then the general elements of the covariance

matrices (2) and (3) can be written as

Aij 5 h(Si2 S0i )(Sj2 S0j )i1 h«i«ji , (4)

Cxj5 h(Sx2 S0x)(Sj 2 S0j )i . (5)

The analysis is determined relative to the ‘‘first guess’’

field, which is assumed to be a good approximation of

the true state. The estimate and the observations are

then equal to the first guess plus small increments. In

this way, the gridpoint analysis consists of interpolation of

the first-guess field to the observation points followed by

interpolation of the differences between the observed and

first-guess values back to the grid point according to (1).

The following a priori information is required for

construction of a successful OI scheme:

d A background or first-guess field with location-

dependent values S0x, which may be a field of climato-

logical means or continually updated running averages

FIG. 3. Examples of along-track SSS (three beams, 390-km-wide

swath): (a) ascending, passing through the North Atlantic on 14

September 2012; and (b) descending, passing through the North

Atlantic on 11 Sep 2012 (see Fig. 2 for locations). Thin curves—raw

data; thick curves—smoothedwith a runningHanning filter of half-

width of ;60 km (approximately half-width of the Aquarius foot-

print). Colors indicate the three Aquarius beams.
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or forecasts (e.g., Clancy et al. 1990; Reynolds and

Smith 1994).
d Covariance of the field to be analyzed. In practice, it is

often expressed in a simple analytical form with a few

degrees of freedom, allowing for a practical estimation

of parameters from observations.
d Covariance of the measurement noise, which can be

estimated from an ensemble of realizations of the

data, in particular, from a long time series of the data.

Specific choices of parameters used to construct

gridded SSS fields from Aquarius L2 data in the North

Atlantic are addressed in the following section.

b. Specifics

1) PREPARATION OF INPUT DATA

To produce the gridded product, the L2 SSS data are

first checked for quality. Data points contaminated by

land (land fraction . 0.005) are excluded from the

analysis. Also excluded from the analysis are data points

that are flagged as severely contaminated by radio fre-

quency interference (RFI), and/or sampled during high

wind (wind speed . 15m s21).

The next step consists of smoothing the along-track

SSS data (each beam separately) with a running Han-

ning filter of half-width of about 60 km to suppress high-

frequency instrument noise (e.g., Fig. 3). With the

Aquarius ;10-km along-track sampling, the filter

weights 12 adjacent observations, which has been found

to be quite sufficient to significantly reduce the noise

level, yet preserve the ocean signal from oversmoothing.

The effect of filtering of the along-track data is dem-

onstrated in Fig. 4, which displays the mean wave-

number spectra of SSS representing the unfiltered and

filtered data from the Aquarius repeat track passing

through the North Atlantic (see Fig. 2 for location). The

spectrum of the unfiltered data (blue line) is character-

ized by a pronounced transition from ‘‘red’’ to ‘‘white’’

shape at the wavelength near 100 km. The white spec-

trum at wavelengths shorter than 100 km is primarily

due to the instrument noise. At wavelengths longer than

100 km, the oceanic signal starts to emerge and the

power level rises toward the longest wavelength re-

solved by the spectral analysis. Integrating the power of

the white noise over the wavenumber domain yields

a root-mean-square error of ;0.21 psu. The signal-to-

noise ratio, defined as the ratio of the low-wavenumber

signal variance to the high-wavenumber noise variance,

is about 40 at 1000-kmwavelength and only 10 at 500-km

wavelength. After applying the filter procedure (red

line) most of the short-wavelength noise is eliminated

while leaving the ocean signal practically unchanged.

[this can be shown, e.g., by subtracting a flat variance of

white noise (0.00025 psu2) from the blue curve; the result

is the green curve]. It is likely, however, that residual

noise effects are still present in the filtered data, par-

ticularly in the form of long-wavelength errors, which

are treated separately.

2) FIRST GUESS

The first-guess fields, from which deviations are

computed by the OI analysis, are derived frommonthly-

mean SSS fields obtained with variational interpolation

of Argo buoy measurements. The Argo product is de-

veloped at the Asia-Pacific Data-Research Center

(APDRC), which provides salinity maps on standard

depth levels on a monthly basis (http://apdrc.soest.

hawaii.edu/projects/argo/). Figure 5 shows an example

of the Argo-derived monthly-mean SSS field in the

North Atlantic.

The advantage of using Argo-derived SSS fields as the

first guess is twofold. First, Argo-derived SSS fields are

independent of the analysis of the satellite data.

Therefore, the data increments, defined as the differ-

ence between the data and the first guess, are also in-

dependent of the analysis and can be used to compute

the error statistics required by OI (Reynolds and Smith

1994). Second, Argo-derived SSS fields, since they are

based on concurrent data, provide unbiased estimates of

the first guess as compared to, say, climatological fields,

which can be biased at large-scales due to the presence

FIG. 4. Mean along-track wavenumber spectra of SSS in the area

between 108 and 408N computed from the data of the ascending

portion of the Aquarius repeat swath that passes through the

SPURS domain (see Fig. 2 for location). The spectra are computed

from 83 Aquarius passes (September 2011–April 2013) and the

three beams are averaged together. The blue and red curves rep-

resent the unfiltered and filtered data, respectively, as described in

the text. The total variances associated with the blue and red curves

are 0.396 and 0.352 psu2, respectively. The green curve is obtained

by subtracting a flat variance of white noise (0.00025psu2; black

dashed line) from the blue curve.
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of significant trends related to climate change (e.g.,

Durack and Wijffels 2010) and/or their reliance on

highly inhomogeneous multitype-instrument historical

data (Gouretski and Koltermann 2007; Roemmich and

Gilson 2009).

3) SIGNAL STATISTICS

The OI analysis is determined in terms of data in-

crements relative to a first guess. Therefore, the signal

statistics, required by OI, must be derived for the data

increments relative to the specified first guess (Reynolds

and Smith 1994). However, the Aquarius along-track

data are contaminated by long-wavelength correlated

errors, which may result in correlation functions domi-

nated by these errors. To overcome this problem, the

spatial correlation structure of mesoscale SSS anomalies

is derived from Aquarius data by dividing the along-

track observations into shorter 108 latitude segments.

The basic assumption here is that the dominant wave-

lengths of the correlated errors are long enough (half

wavelength. 108 in latitude; Fig. 1) such that the effect

of these errors can significantly be reduced by removing

liner trends fitted to the along-track SSS data.

The spatial correlation scales of SSS anomalies were

computed from Aquarius data as follows. The L2 SSS

data [low-pass filtered as described in section 3b(1)]

were split into four subregions, each spanning 108 in

latitude: 08–108, 108–208, 208–308, and 308–408N. The

first-guess values of SSS were subtracted from the data

to obtain the data increments. Here, the first-guess

values of SSS at observation locations at any given

time were obtained by the space–time interpolation of

theArgo-derivedmonthly-mean SSS fields [section 3b(2)].

To estimate autocorrelation functions of SSS, linear

trends were first removed for each 108 ground-track seg-

ment to produce SSS anomalies, presumably free from

long-wavelength errors. The along-track autocorrelation

functions of SSS anomalies were then estimated for the

fractions of ascending and descending paths that span

individual 108 subregions, assuming that the correlation

between two points on a given track is a function only

of a distance between the points. Finally, the ensemble

mean autocorrelation functions in each subregion were

estimated by averaging over all the corresponding in-

dividual autocorrelations.

Figure 6 illustrates the procedure described above.

Displayed are ensemble-mean autocorrelations of SSS

for the repeat swath shown by the heavy lines in Fig. 2.

Each color in Fig. 6 represents a group of ground-track

segments within a particular latitude band. For com-

parison, autocorrelation functions of ancillary SSS are

shown by the dashed lines. [The model-derived L2 an-

cillary data were processed in exactly the same way as

Aquarius data (including along-track filtering) except

for replacing the first guess by the time mean over the

period of Aquarius observations.] The space-lagged

correlations computed from the Aquarius along-track

data agree well with the correlations computed from

ancillary SSS, providing additional confidence in our

approach. Note that ancillary SSS, since it comes from

aHYCOMmodel solution, is free from ‘‘measurement’’

errors, including long-wavelength errors.

Figure 6 indicates that the structure of the correlation

functions is very similar in all latitude bands. The spatial

(meridional) scales of mesoscale SSS variability, de-

termined here as the lag of the first zero crossing of the

corresponding correlation function, vary little with lat-

itude. They are ;180 km in the zonal band 08–108N and

;150 km in the zonal band 308–408N. Because the dif-

ferences are relatively small, it is reasonable to model

SSS variability with a constant spatial decorrelation

scale, independent of latitude (see also Table 1). To

approximate the observed correlation array, we choose

to use a simple Gaussian curve given by

c(r)5 exp(2r2/R2) , (6)

where r is the spatial lag and R 5 90 km is the e-folding

decay scale.

The Gaussian function with the e-folding scale R 5
90 km (green curve in Fig. 6a) was found to best repre-

sent the shape of the ensemble-mean autocorrelation

function over the distance range 0–180 km. The corre-

sponding wavenumber spectra are displayed in Fig. 6b.

In the wavelength range from about 60 to 300 km, the

empirical spectrum follows a power law of the form

;k22, where k is the wavenumber. Note that the

Gaussian-shape autocorrelation function has the decay

rate for k that matches that of the observed spectra.

The apparent shortcoming of the Gaussian function,

which we select as a statistical model for interpolation of

FIG. 5. September 2012mean SSS field (psu) from in situArgo float

data (APDRC product).
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Aquarius SSS, is that it fails to accommodate the nega-

tive (oscillatory) lobe of the sample correlation array.

Although it is possible, in principle, to utilize a more

sophisticated analytical function to fit the estimations,

the simpler Gaussian model has been selected for the

following reasons. First, one of the strict requirements

on the choice of a possible analytical form of the cor-

relation function in the OI analysis is that such a func-

tion must be positive definite; that is, the eigenvalues of

each resulting correlation matrix must be nonnegative

(Gandin 1965; Bretherton et al. 1976; Thiebaux and

Pedder 1987; Weber and Talkner 1993). This is difficult

to test for an arbitrary correlation model in two di-

mensions (Weber and Talkner 1993). In this regard, the

correlation model given by the Gaussian function is

proven to be positive definite on every Euclidian space

and on the sphere (Yaglom 1986; Weber and Talkner

1993), which warrants stability of the algorithm. This

choice may not be truly optimal; nonetheless it is suit-

able, since the decorrelation scales and the major

structure of the observed correlations are well repro-

duced by the Gaussian model (see also the appendix).

Second, interpolation with the Gaussian function can be

considered as a general form of a low-pass filter acting

on the data (McIntosh 1990; Sokolov and Rintoul 1999).

Consideration of the assumptions used to compute

correlations from the along-track satellite data suggests

that such a low-pass filtration would be more preferable

than the case of a bandpass filter, which would corre-

spond to the oscillatory correlation model (Sokolov and

Rintoul 1999). More sophisticated functional forms

could be utilized when more precise data on the SSS

correlation structure become available.

The analysis of along-track data gives some useful

information about the characteristic meridional scales of

SSS variability, but it tells us virtually nothing about the

zonal scales. One way to overcome this problem is to

assume that the spatial correlations are isotropic. This

might be true in some areas but unlikely, for example, in

the tropical region, where both atmospheric forcing and

ocean dynamics are strongly anisotropic (Delcroix et al.

2005; Reverdin et al. 2007). Yet, limited information

exists on the characteristic time and space scales of SSS

variability in the ocean (Delcroix et al. 2005; Reverdin

et al. 2007). Studying seasonal variability of SSS in the

NorthAtlantic, Reverdin et al. (2007) found that inmost

regions outside of the equatorial belt, the zonal and

meridional scales are comparable, while near the equa-

tor the zonal scales are ;1.5–2 times larger than the

meridional scales.

To add to the realism of our OI analysis, we also as-

sume that in the tropical region (08–158N) the zonal

scales are larger than the meridional scales and modify

(6) to take an anisotropic form

c(rx, ry)5 exp(2r2x/R
2
x2 r2y/R

2
y) , (7)

where rx and ry are spatial lags in the zonal and merid-

ional directions, respectively; and Rx and Ry are the

FIG. 6. (a) Autocorrelation functions for SSS (solid lines) from the data of the ascending portion of the Aquarius

repeat swath that passes through the SPURS domain (see Fig. 2 for location). Correlation functions computed from

ancillary SSS data are shown by the dashed lines. Different colors correspond to different latitude bands (see text for

details). The ensemble-mean approximation by the Gaussian function with the e-folding scale of 90 km is shown by

the heavy green line. (b) The corresponding wavenumber spectra (normalized) are shown.

TABLE 1. The variance and correlation length scales (the lag of

the first zero crossing of the spatial correlation function) of meso-

scale SSS variability as seen by Aquarius in 108 latitude bins in the

North Atlantic.

Latitude band (8N) Variance (psu2) Length scale (km)

0–10 0.249 150

10–20 0.046 160

20–30 0.023 135

30–40 0.079 140

JULY 2014 MELN I CHENKO ET AL . 1589



associated zonal and meridional decorrelation scales.

The meridional scale is set asRy 5 90 km (the same as in

the subtropical region), while the zonal scale varies

from Rx 5 180 km at the equator to Rx 5 90 km at 158N
as follows:

Rx(y)5 180 exp(2y2/324:6) km, 08# y# 158N, (8)

where y is latitude in degrees. Near the equator, the

aspect ratio Rx/Ry equals 2 (following Reverdin et al.

2007) and gradually decreases toward higher latitudes.

At latitude 158N, the correlation function (7) becomes

isotropic (Rx 5Ry 5 90 km) andmatches the correlation

function given by (6). We note, however, that our as-

sumptions of the zonal decorrelation scales are somewhat

arbitrary due to the lack of appropriate high-resolution

SSS data. (It has been determined a posteriori that the

use of the anisotropic correlation in the tropics results

in slight improvement of the OI SSS analysis.)

4) ERROR STATISTICS

Analysis of Aquarius along-track SSS data (e.g., Fig.

3) reveals that there are long-wavelength errors (inter-

beam biases) that are correlated over long distances

along the satellite tracks. To incorporate statistical in-

formation on these errors into our OI scheme, we adopt

the idea that has originally been developed for altimeter

applications (e.g., Blanc et al. 1995; Le Traon et al. 1998)

and introduce the error covariancemodel for theAquarius

data in the form

h«i«ji5 dijs
2
w 1s2

L if data points i, j are on the same

track and beam and in the same cycle, and

h«i«ji5 dijs
2
w otherwise,

where dij is the Kronecker delta, s2
w is the variance of the

uncorrelated (white) noise, and s2
L is the variance of the

long-wavelength (along track) error.

Thus, the algorithm allows two types of random errors

to contribute to the elements of the error covariance

matrix: the white noise (diagonal elements), represent-

ing uncorrelated errors; and the long-wavelength error

(off-diagonal elements), representing interbeam biases

that correlate over long distances along the satellite tracks.

Each beam is modeled as having independent errors.

Taking into account prior filtering of the along-track

SSS, the variance of the white noise in the input data is

assumed to be 10% of the signal variance, independent

of the geographical location. It is thus assumed that

uncorrelated errors, although relatively small, are still

present in the data, allowing for some additional smooth-

ing during the OI procedure.

The long-wavelength error in Aquarius observations

of SSS is difficult to assess in a direct way due to the lack

of a proper reference or ‘‘ground truth.’’ To infer the

statistical structure of the correlated portion of the re-

trieval error in Aquarius data, we compare statistics of

the interbeam differences as seen byHYCOM (ancillary

SSS) and those evaluated from Aquarius observations.

In this way, we diminish the effects of large-scale biases

that may simultaneously be present in both theAquarius

and HYCOM data.

The statistics of the interbeam differences are evalu-

ated using Aquarius ground-track segments that span

the entire domain from 08 to 408N. To eliminate con-

tributions from mesoscale SSS anomalies (Fig. 6), the

along-track SSS data are low-pass filtered with a running

Hanning filter of half-width of;600 km. The interbeam

differences are computed for each ground track as SSS

of the middle beam (red lines in Fig. 2) minus SSS of

the two other beams (green and blue lines in Fig. 2).

The covariances of the interbeam differences are com-

puted as a function of along-track separation and then

averaged over all tracks to obtain the ensemble statis-

tics. The ancillary SSS data are processed in exactly

the same way. The estimation of the long-wavelength

error statistics is accomplished by comparing the co-

variances of the interbeam differences forAquarius and

ancillary SSS.

Figure 7a shows covariances of the interbeam differ-

ences as a function of along-track separation distance for

Aquarius (red) andHYCOM (blue) SSS. Notice that the

variance of the Aquarius SSS interbeam differences is

consistently larger than its HYCOM counterpart at all

lags, presumably due to correlated errors in Aquarius

SSS retrievals. Assuming that the interbeam differences

in Aquarius and HYCOM data are not correlated, we

can estimate the statistical structure of the long-wavelength

retrieval error in Aquarius SSS data as the difference

between the Aquarius and HYCOM interbeam differ-

ence covariances (black). The corresponding variance

spectrum is shown in Fig. 7b (black).

Both the covariance function and the spectrum of the

long-wavelength error demonstrate that this error has

a complex spatial structure. The spectrum is red with

more energy concentrated at longer wavelengths with

no significant peaks. To obtain a functional form for the

long-wavelength error correlation to use in the OI al-

gorithm, we utilize a simple analytical model given by

the exponential function of the form

CL(l)5s2
L exp(2l/RL) , (9)

where l is the along-track separation distance and RL 5
500 km is the exponential decay scale. The estimate of
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RL is obtained by fitting the curve (9) to the interbeam

bias statistics, as shown in Fig. 7 by the green curve.

The model (9) is chosen to represent the error corre-

lation structure because this is the simplest model con-

sistent with the data. It provides a good fit to the error

correlation array over the distance range 0–600km over

which the correlation is significant, and it satisfies the

functional requirements of OI (Weber and Talkner 1993).

The variance of the long-wavelength error is assumed

to be independent of the geographical location (s2
L ’

0.085 psu2; Fig. 7a, black curve at zero spatial lag).

However, the ratio of the error variance to the signal

variance is allowed to vary with latitude, following the

associated changes in the signal variance (Table 1).

These variations are modeled as follows:

h5 [12 exp(2y2/225)]/1:431 0:3, (10)

where h is the ratio of the long-wavelength error vari-

ance to signal variance. Thus, the relative long-wavelength

error variance varies from 30% in the near-equatorial

region, where the signal variance is large, to about 100%

at midlatitudes, where the signal variance is relatively

low (Table 1).

5) IMPLEMENTATION

The OI SSS analysis is computed weekly on a 0.258
longitude 3 0.258 latitude grid in the North Atlantic

between 08 and 408N, covering the period from

September 2011 through August 2013. The weeks are

defined to correspond to the standard level-3 product

produced by ADPS. The OI SSS analysis is run in a local

approximation; namely, only data points in a smaller

subdomain around the analysis grid point are used. The

radius of the subdomain is set to 600 km to accommo-

date the long-wavelength correlation structure (Fig. 7a).

This approach seems to be reasonable. Data points be-

yond this radius contribute very little to the gridpoint

analysis, since the decay length scales for both the signal

and error are shorter than 600 km. The local approxi-

mation also helps to reduce effects of spatial in-

homogeneity in the signal and error statistics (Weber

and Talkner 1993). Finally, taking into account prior

filtering of along-track SSS data and to reduce compu-

tational load, only one data point out of three (for each

track/beam) is retained.

4. Mapping results

The following examples demonstrate the utility of the

OI algorithm described above.

Figure 8 compares SSS maps in the North Atlantic for

the week 26 August–1 September 2012 produced by

three different analyses, including 1) the standard 7-day

level-3 analysis currently produced by ADPS; 2) the

conventional OI analysis (COI), which does not take

into account the long-wavelength error (s2
L 5 0); and

3) the advanced OI scheme (AOI), which takes into

account the long-wavelength error as discussed in section

3b(4). The standard 7-day level-3 product is constructed

by bin averaging of Aquarius L2 SSS data within 18 lon-
gitude3 18 latitude spatial bins centered on a regular 18
resolution grid. The two OI analyses differ only in the

way they treat the long-wavelength error; all other pa-

rameters are kept the same.

The bin-average procedure in the standard level-3

product effectively eliminates high-frequency (white)

instrument noise. Yet, it fails to correct for correlated

errors (interbeam biases) that manifest themselves as

characteristic north–south-striped patterns aligned

with the satellite tracks. These stripes are particularly

visible when only ascending (Fig. 8a) or descending

FIG. 7. (a) Autocovariances of interbeamdifferences computed from the data of theNorthAtlantic (08–408N). Red

and blue curves represent Aquarius and ancillary SSS, respectively. The black curve is the difference between the

two, representing the covariance of the long-wavelength error inAquarius data. Its approximation by the exponential

function is shown by the green dashed curve. (b) The associated spectra are shown.
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(Fig. 8d) data are used as input data to construct the

corresponding SSS maps, but they are also noticeable

in the combined data (Fig. 8g). The same is true for the

COI analysis. While resulting in better spatial resolu-

tion, the COI analysis leaves the long-wavelength error

untreated, such that the satellite tracks appear even

more visible in the corresponding SSS maps (Figs. 8b,

8e, and 8h). In contrast, the AOI scheme effectively

eliminates the along-track correlated errors. The re-

sulting SSS maps constructed from either ascending

(Fig. 8c) or descending (Fig. 8f) data are nearly iden-

tical and both resemble the true ocean, free from

spurious structures. The impact of taking into account

the long-wavelength error in the AOI analysis is fur-

ther illustrated by comparing the differences between

the ascending and descending products (Figs. 8j–l). In

the AOI analysis, these differences are significantly

reduced.

The resolution capabilities as well as limitations of the

AOI SSS analysis can be inferred from Fig. 9, which

FIG. 8. Weekly SSS fields fromAquarius for the week 27 Aug–2 Sep 2012 constructed using different algorithms. (left) Bin averaging of

Aquarius L2 SSS data within 18 longitude 3 18 latitude bins centered on a regular 18 grid (standard 7-day level-3 product provided by

ADPS; gaps in the maps are filled with linear interpolation). (middle) Conventional OI analysis (COI) that does not take into account

long-wavelength errors (s2
L 5 0). (right) Advanced OI scheme (AOI) that takes into account long-wavelength errors. Upper row (a)–(c)

Ascending data, (d)–(e) descending data, (g)–(i) ascending and descending combined, and (j)–(l) ascending minus descending.
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compares the SSS map for the week 9–15 September

2012 with thermosalinograph (TSG) salinity measure-

ments taken from 3-m depth by Research Vessel (R/V)

Thalassa. The in situ measurements along the ship track

reveal numerous small-scale structures with spatial

scales smaller than the ;100-km Aquarius footprint.

Not surprising, these structures are not resolved in the

satellite-derived SSSmap. At the same time, it is evident

that the analysis is capable of capturing features at scales

of at least 150 km (see also the appendix). An example is

the tongue of low SSS at ;328–338N followed by the

tongue of high SSS to the north (Fig. 9b). Unlike the

TSG line, the SSS map from Aquarius provides a de-

tailed two-dimensional view on the spatial structure of

SSS variability in the region.

The high spatial resolution of weekly AOI SSS anal-

yses is further illustrated by Fig. 10, which shows ex-

ample SSS maps in the tropical North Atlantic for three

weeks in July, September, and October 2012. Among

the many features represented in Fig. 10 is the plume of

low-salinity water that extends far offshore off the coast

of South America. The plume is associated with the

Amazon River outflow and is present seasonally during

summer and fall and weakens or disappears in other

months (Muller-Karger et al. 1988; Lentz 1995; Ffield

2007). The Aquarius SSS maps show a very detailed

structure of the plume (Lagerloef 2012). Figure 10a

shows how the plume starts to spread eastward into the

North Atlantic in July 2012, presumably in the retro-

flection of the North Brazil Current (Muller-Karger

et al. 1988; Lentz 1995). Over time, as the plume extends

farther eastward, it becomes less continuous. However,

the boundaries of the plume remain well defined and are

characterized by strong SSS gradients.

Finally, to characterize SSS variability in the North

Atlantic in one concise picture, Fig. 11 shows a time–

latitude plot of SSS along the meridional section passing

through the SPURS domain. The section coincides with

the Aquarius track passing through the SPURS domain

(heavy red line in Fig. 2 along the ascending pass). SSS

values along the section are obtained by linear inter-

polation of weekly AOI SSS maps. The analysis dem-

onstrates a consistent pattern of seasonal variability that

is most pronounced in the tropical region. A narrow belt

of low SSS, presumably associated with the intertropical

convergence zone (ITCZ), migrates from the south-

ernmost position near the equator in early spring to the

northernmost position at about 88N in winter. This

structure also exhibits rapid temporal changes in some

cases and is characterized by strong spatial gradients

(see also Fig. 10). The weakest seasonal variability is

observed in the subtropics, particularly in the area of

the subtropical salinity maximum. The location of the

salinity maximum slightly changes during the course of

the year from ;268N in fall–winter, when SSS also rea-

ches its maximum, to ;248N in late spring, generally

consistent with the analysis of historical hydrographic

data (A. Gordon 2013, personal communication).

5. Verification statistics and intercomparison of
SSS analyses

Argo buoy salinity measurements in the near-surface

layer are used to provide OI error statistics during the

FIG. 9. (a) AquariusAOI SSS (psu) for the week 9–15 Sep 2012.

Dots show locations of Argo profiling floats surfaced during the

same week. The black line shows locations of TSG measurements

taken by R/V Thalassa. (b) As in (a), but zoomed in to the region

268–368N, 428–228W. Note that the color scales in (a) and (b) are

different. (c) Comparison of AOI SSS map with TSG salinity

measurements. The RMSD 5 0.12 psu.
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period from September 2011 through August 2013. The

error statistics are calculated by comparing buoy mea-

surements for a given week with SSS values at the same

locations obtained by interpolating the corresponding

Aquarius OI SSS maps. To quantify specifically the ef-

fect of incorporating error statistics into the OI algo-

rithm, two versions of the OI analysis are run: AOI and

COI. Also, in order to answer the question whether the

OI analysis significantly improves the accuracy of

Aquarius-derived SSS maps, the analysis-to-buoy com-

parisons are made for the standard level-3 SSS product

currently produced by the ADPS.

The number of buoy data per each week in the North

Atlantic is around 80 with quasi-random geographical

distribution (e.g., Fig. 9a), and it remains around this

number during the course of Aquarius measurements.

The only exception is fall 2012, when a large number of

Argo floats were deployed in the SPURS domain. The

buoy data are typically drawn at 4–5-m depth and in

most cases provide quite accurate representation of SSS.

Under certain meteorological conditions, however, the

difference between salinity at 5-m depth and the sea

surface can be significant and exceed 0.1 psu (Henocq

et al. 2010; Lagerloef et al. 2013).

Figure 12 compares different SSS analyses using

common statistics. The mean average of the differ-

ences between each product and buoy data over all

buoy locations, shown in Fig. 12a, is a measure of bias.

A negative number in this case implies that on average

the SSS estimate from Aquarius data is fresher than

the Argo buoy data, and vice versa. The weekly time

series of the root-mean-square differences (RMSD)

between each of the analyses and buoy data are shown

in Fig. 12b. Table 2 summarizes the mean, standard

deviation, and RMSD of the differences between the

analyses and buoy data for the 104-week period of

comparison.

Several conclusions can be made from Fig. 12 and

Table 2. First, the average biases for the three analyses

are all smaller than 0.03 psu (Table 2). However, the

weekly time series of the biases (Fig. 12a) reveal that

there are periods, such as in the fall of 2011, when the

biases are significant. For example, the COI analysis and

the standard level-3 product are both ;0.08 psu fresher

than the buoy data in October 2011 and;0.1 psu saltier

than the buoy data in January 2012. The AOI analysis

results in much smaller biases, but it does not completely

eliminate them. All three analyses exhibit periods of

both negative and positive biases that tend to cancel

each other over the 104-week period of comparison. In

general, the standard deviation of the weekly biases is

the smallest for the AOI analysis as compared to the

other two analyses (Table 2).

The RMSD differ significantly for the three analyses.

On average, the RMSD of the AOI analysis is about

35% less than that of the COI analysis and about 40%

less than that of the standard level-3 product (Table 2).

Figure 12b demonstrates that the AOI analysis has the

lowest RMSD with respect to the buoy data for nearly

all weeks. In all three analyses, the buoy-to-analysis

comparison has the worst RMSD in spring and summer.

This is likely a reflection of the fact that very shallow

mixed layers are often formed in spring and summer, so

that salinity at 4–5-m depth measured by a typical Argo

buoy may differ from that at the sea surface. A detailed

comparison (not shown here) indicates that multiple

spikes in the RMSD time series, particularly in the

standard level-3 product, are caused by a few buoys

FIG. 10. Aquarius AOI SSS in the tropical North Atlantic for

(a) 29 Jul–4 Aug 2012, (b) 9–15 Sep 2012, and (c) 21–27 Oct 2012.

Black dots show locations of Argo buoy measurements for the

corresponding week.
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located in the tropics. The fact that the spikes are ob-

served in spring and summer suggests that these spikes

are likely due to misrepresentation of SSS by the Argo

buoymeasurements, as discussed above. It is also important

to note that the RMSD of the AOI analysis is smaller

than 0.2 for nearly all weeks during the winter sea-

son when, due to surface cooling and usually stronger

winds, mixing penetrates to greater depths; thus, buoy

FIG. 11. Time–latitude plot of AOI SSS (psu) along the meridional section passing through

the SPURS domain (the location of the section is shown by the heavy red line in Fig. 2 along the

ascending satellite pass). The white dashed line approximates the location of the subtropical

SSS maximum. The black dashed line approximates the seasonal march of the ITCZ.

FIG. 12. (a) Weekly mean differences and (b) RMSD between Argo buoy data in the North

Atlantic (08–408N) and three Aquarius SSS analyses: AOI (red), COI (blue), and level-3 SSS

product provided byADPS (green). The error statistics are computed by comparingArgo buoy

measurements for a given week with SSS values at the same locations obtained by interpolation

of the corresponding SSS maps.
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measurements at 4–5-m depth provide more accurate

representation of SSS.

The utility of the AOI product is further illustrated by

Fig. 13, which compares histograms of the differences

between the buoy data in the North Atlantic (08–408N)

and the three SSS analyses. The AOI estimates have an

overall good agreement with the buoy data, such that the

histogram of the differences is quite narrow, with;55%

of the differences falling into the range [20.1, 0.1] psu.

For comparison, this number is 36% for the COI anal-

ysis and about 34% for the standard level-3 product. The

number of outliers, defined here as the differences larger

than 0.5 psu, is about 3% in the AOI analysis, 5% in the

COI analysis, and 6% in the standard level-3 product.

One should keep in mind, however, that the relatively

poor performance of the standard level-3 product with

respect to the buoy data is partly due to the coarser grid

on which the product is constructed.

Finally, Fig. 14 shows the scatterplots between the

Aquarius SSS (mapped by the three analyses) and Argo

buoy data, which clearly demonstrates where most of

the close agreement between the AOI SSS analysis and

in situ data is achieved. The scatter of points is consid-

erably reduced over the regions where SSS is higher than

;35.5 psu (yellow-to-red colors in Fig. 5), but it remains

significant over fresher areas, generally in the tropics

(blue-to-magenta colors in Fig. 5). There are a few

possible explanations for this effect. First, the tropics are

characterized by vigorous variability at different space

and time scales (Fig. 11), including small-scale vari-

ability. In the presence of strong spatial gradients (e.g.,

Fig. 10), the difference between a point measurement by

a buoy and the area-averaged SSS sampled by Aquarius

can exceed 0.2 psu (Lagerloef et al. 2010). Another

source of discrepancy can be related to strong vertical

gradients of salinity in the near-surface layer, such that

salinity at 5-m depth, sampled by a typical Argo buoy,

differs significantly from the surface salinity, sampled

by Aquarius. Vertical salinity differences larger than

0.1 psu (sometimes as large as 1.0 psu) are often ob-

served in the tropical belt between the equator and

158N, which coincides with the average position of ITCZ

(Henocq et al. 2010). It follows that the observed rela-

tively large discrepancies between the Aquarius and

buoy data in the tropics are not necessarily errors in

Aquarius measurements or errors in the mapping pro-

cedure, but may rather reflect the disparity between

time and space scales captured by two different obser-

vational platforms.

6. Summary and discussion

A method has been presented for mapping SSS fields

from Aquarius level-2 data. The method is based on

optimal interpolation (OI) and estimates SSS at a grid

point as a weighted sum of nearby satellite observations

with the weights optimized to minimize the estimation

error variance. The key element of the proposed ad-

vanced OI (AOI) algorithm is that it takes into account

statistics of correlated errors in the satellite retrievals,

referred to here as interbeam biases that appear to

correlate over long distances along the satellite tracks.

TABLE 2. Biases and RMSD statistics between weekly satellite

SSS analyses and buoy SSS in the North Atlantic for the period

from September 2011 to August 2013.

Analysis

Mean bias

(psu)

Std dev of the

weekly biases (psu)

Mean RMSD

(psu)

Level 3 0.028 0.065 0.282

COI 0.026 0.06 0.27

AOI 0.009 0.03 0.198

FIG. 13. Statistics of the differences betweenArgo buoy data in the NorthAtlantic (08–408N) and threeAquarius SSS analyses: (a) AOI,

(b) COI, and (c) standard level-3 SSS product provided by ADPS. The error statistics are computed by comparing Argo buoy mea-

surements for a given week with SSS values at the same locations obtained by interpolation of the corresponding Aquarius SSS maps.
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The inclusion of this type of error information into the

AOI algorithm has been shown to result in more accu-

rate SSS maps, free from spurious structures.

Examples have been presented that suggest that the OI

technique can be an effective tool for mapping Aquarius

SSS while correcting for various errors in the data. The

quality of the AOI analysis has been demonstrated by

considering the agreement between synoptic features

in the SSS fields and those observed in independent in

situ data, particularly high-resolution TSG data. The

AOI analysis has been shown to resolve SSS features

at scales of ;150 km and larger, consistent with the

limited resolution of the input data, and to observe North

Atlantic SSS with space and time resolution not available

from the present global Argo array.

A trial AOI SSS analysis is produced in the North

Atlantic (08–408N) on a uniform grid with 0.258 grid

resolution and with a temporal resolution of one week.

Statistical comparison of the AOI analysis with respect

to the Argo buoy data demonstrates its superior per-

formance as compared to the standard level-3 product

currently produced by the NASA Goddard Space

Flight Center’s Aquarius Data Processing System

(ADPS). In particular, the estimated error of the AOI

analysis is ;40% smaller than that of the standard

level-3 product.

It is worth emphasizing that the analysis presented in

this paper is to a large extent experimental, focusing on

a limited area in the North Atlantic. The results can be

considered only ‘‘suboptimal’’ in the sense that the sig-

nal and error statistics, required by the analysis, are de-

termined approximately. Many assumptions have been

made, some of which are not fully justified. In particular,

the analysis scheme described here assumes both ho-

mogeneity and stationarity of the signal and error sta-

tistics, which is certainly one of the weakest aspects of

the analysis. This is particularly relevant to the error

correlationmatrix. The results indicate that incorporating

error information into the mapping procedure has a

dramatic effect on the quality of resulting SSS maps.

Seasonal and geographical variations in the variance

and/or length scales of the correlated errors inAquarius

SSS retrievals are likely very important factors to con-

sider, but these are beyond the scope of the present

paper and will be evaluated in future studies.

Users of Aquarius SSS data should also be aware that

there are large-scale, space- and time-varying satellite

biases relative to the in situ data in the present global

products (Lagerloef et al. 2013). This problem seems to

be not severe for the North Atlantic between 08 and

408N (Fig. 12a), but it must be addressed in future global

and regional analyses. Although the quality of Aquarius

level-2 data will surely improve in future data versions as

processing algorithms improve, the methodology pre-

sented in this paper should continue to provide value-

added SSS products for regional, high-resolution studies.

Digital data of the weekly AOI SSS analysis in the

North Atlantic are currently available online (at http://

iprc.soest.hawaii.edu/users/oleg/oisss/atl/; weekly SSS be-

ginning from September 2011).
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APPENDIX

Impact of Using the Simplified Correlation Model
and Assessment of the Resolution Capability of the

AOI SSS Analysis

To examine the effect of using the simplified corre-

lation model for the AOI SSS analysis, we computed

correlations of SSS anomalies using the data of weekly

AOI SSS maps. To do this in a straightforward manner,

the maps were interpolated into locations of actual ob-

servations along the satellite tracks. The SSS correla-

tions were then computed in exactly the same way as

using the original L2 data [section 3b(3)].

Figure A1 illustrates the ensemble-mean autocorre-

lations of AOI SSS for the repeat track shown by the

heavy lines in Fig. 2. For comparison, autocorrelations

computed from theAquarius L2 data (Fig. 6) are shown

by the dashed lines. The figure indicates that the shapes

of the space-lagged correlation functions computed

from the Aquarius along-track data agree well with

those computed from the AOI output. This includes not

only positive values prior to the first zero crossings

(which are approximated by the Gaussian model) but

also the negative lobes at larger lags. The mesoscale SSS

variance, however, is much reduced in the AOI SSS

fields as compared to the along-track data, consistent

with the filtering properties of both the signal and error

correlation models used in the analysis. The degree of

reduction is about a factor of 1.5 in the tropics and up to

3 at higher latitudes.

To assess the spatial resolution capability of the AOI

SSS analysis, we follow the spectral approach of Chelton

et al. (2011) and compare wavenumber spectra of SSS

evaluated from the gridded SSS product and the original

Aquarius along-track SSS data. Figure A1b shows zonal

(red line) and meridional (blue line) wavenumber

spectra of SSS computed from the 104 weekly AOI SSS

fields in the subtropical North Atlantic in the region

extending from 158 to 358N (2220 km 3 2220 km) and

from 508 to 288W. The black line is the composite

spectrum derived from the Aquarius along-track mea-

surements of SSS. All the spectra are normalized by the

variance and scaled to have the same value at wave-

number k5 2:231023 km21 (wavelength 5 450 km).

Figure A1b demonstrates that for wavenumbers

smaller than about 2:731023 km21 (wavelengths larger

FIG. A1. (a) Solid lines show the ensemble-mean autocorrelations of AOI SSS for the ascending portion of the

Aquarius repeat swath that passes through the SPURS domain (see Fig. 2 for location). Different colors correspond

to different latitude bands. To compute these autocorrelations, weekly AOI SSS maps were interpolated into lo-

cations of actual satellite observations along the satellite track. For comparison, autocorrelations computed from the

Aquarius L2 data [section 3b(3); Fig. 6] are reproduced here by the dashed lines. The green curve is the Gaussian

function used in the AOI SSS analysis. (b) Zonal (red) and meridional (blue) wavenumber spectra of SSS computed

from the 104 weekly AOI SSS fields in the region [158–358N, 508–288W]. The black line is the ensemble-mean

spectrum derived from the Aquarius along-track measurements of SSS. All the spectra are normalized by the cor-

responding variance and scaled to have the same value at wavenumber k5 2:23 1023 km21. The vertical dashed line

corresponds to wavelength of 370 km.
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than about 370 km), the AOI and Aquarius level-2 SSS

spectra are very similar in shape. In fact, the three

curves are nearly indistinguishable for wavelengths

between 450 and 1100 km. [Different spectral be-

havior at the largest scales is due to the area of the

subtropical SSS maximum being elongated in the zonal

direction (e.g., Fig. 5), so that the large-scale meridi-

onal gradients of SSS are larger than the zonal ones.]

For wavenumbers higher than about 2:73 1023 km21,

the AOI SSS spectra quickly roll off with increasing

wavenumber, indicating the smoothing effect of the

AOI procedure. It is thus apparent that the spatial

resolution capability of the AOI SSS analysis is about

370–450 km in terms of a wavelength (scales larger

than about 120 km), consistent with our estimates in

section 4 (Fig. 9).
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